Problem 1.7

Find the separation vector from the source point $(2,8,7)$ to the field point $(4,6,8)$. Determine its magnitude (\boldsymbol{z}), and construct the unit vector $\hat{\boldsymbol{\varepsilon}}$.

Solution

The position vector to the field point is

$$
\mathbf{r}=\langle 4,6,8\rangle
$$

and the position vector to the source point is

$$
\mathbf{r}^{\prime}=\langle 2,8,7\rangle .
$$

The separation vector is the displacement vector from the source point to the field point.

$$
\begin{aligned}
\mathbf{v} & =\mathbf{r}-\mathbf{r}^{\prime} \\
& =\langle 4,6,8\rangle-\langle 2,8,7\rangle \\
& =\langle 2,-2,1\rangle
\end{aligned}
$$

Its magnitude is

$$
\imath=|\boldsymbol{z}|=\sqrt{2^{2}+(-2)^{2}+1^{2}}=3 .
$$

The unit vector pointing from the source point to the field point is

$$
\hat{\boldsymbol{z}}=\frac{\boldsymbol{z}}{|\boldsymbol{z}|}=\frac{\langle 2,-2,1\rangle}{3}=\left\langle\frac{2}{3},-\frac{2}{3}, \frac{1}{3}\right\rangle=\frac{2}{3} \hat{\mathbf{x}}-\frac{2}{3} \hat{\mathbf{y}}+\frac{1}{3} \hat{\mathbf{z}} .
$$

